TUGAS ALJABAR LINIER dan MATRIKS
Jawaban:
- Metode Dekomposisi
![]() |
A =
![]() |
= -
![]() |
= -
5-2
![]() |
A = -
![]() |
A= -
![]() |
![]() |
![]() |
![]() |
A =
A = = 42
METODE CHIO
Basis
B(0) + b2
B(2/3) + b3
B(-2/3) + b4
B(-2/3) + b5
![]() |
Basis
B(1/2) + b3
B(-1) + b4
B(2/3) + b5
Basis
B(1/2) + b4
B(-1/5) + b5
![]() |
Basis
B(12/25)+b5
![]() |
D = 3 x (-3) x (10/3) x (5/6) x (-42/25)
= 42
Dekomposisi
![]() |
B =
![]() | |||
![]() |
= -
![]() | |||
![]() | |||
=
![]() |
=
![]() | |||
![]() | |||
=
![]() | ![]() | ||
=
![]() |
= ( 5472 – 4864)
= - 38
Metode CHIO
![]() |
B =
Basis
B(1)+b2
= B(5)+b3
![]() |
Basis
= B(-5/2)+b3
B(-2)+b4
![]() |
=
Basis
B(8/9)+b4
![]() |
=
![]() | ![]() |
Jadi Det B = -(2x2x x )
= -38
2. C=
=
=
Jadi terbukti bahwa matriks tersebut adalah matriks bujur sangkar istimewa yang disebut dengan Nilpoten dengan indeks 2.
3. Cari determinan dengan menggunakan metode ekspansih
C=
Det C = a11-a12
+a13
=1-2
+5
=1(-20+20)-2(-10+10)+5(-4+4)
=1(0)-2(0)+5(0)
=0